Category: The Knowledge: Extended

Curiosity

This post was written for Merck and the Merck Curiosity Initiative 

If there’s one feature that unites scientists across all different disciplines and fields – from microbiologists to astronomers and geologists – it would be an insatiable curiosity.  Of course, people from many other walks of life are curious in their work or personal life, but within research this process of exploring the world around us has been rigorously formalised into what we call the Scientific Method.

In essence, the scientific method is simply a way of coming to understand how nature works, and gaining mounting confidence that your explanations are likely to be true. Scientists observe the world carefully, trying to spot patterns in its behaviour, and then think of an explanation – an hypothesis – that would account for what we see. Whenever nature is being confusing or overwhelming we set-up carefully-constrained circumstances to remove complicating factors and allow us to investigate one particular aspect in detail – this is the essence of an experiment. An experiment is just a way of asking a clearly-worded question of the universe and watching how it responds. Using these tools, we keep testing our hypothesis and if it continues to explain what you see then it becomes a well-established theory or law, and if not you must throw it out and start again with a now better-informed explanation. The history of science is the repeated realization that we have been wrong, and stepping forward with a more reliable hypothesis. This is what makes science such a fabulously effective means for understanding the world and ensuring that our explanations become better over time – far more so than other belief systems. Science isn’t a list of facts that you know, it’s how you can come to know them in the first place. And underlying it all is the knowledge-generation machinery of the scientific method, fuelled by human curiosity.

So most of science is keeping a close eye on the natural world and spotting patterns in its behavior. Or even more thrillingly for piquing your curiosity, times when something doesn’t fit the established pattern; an anomaly. Anomalies are simply occasions when something doesn’t behave in the way that you’d been expecting from past experience. They are when you sit back and say, ‘Hmmm, that’s odd’. And this is when you get most excited as a scientist, because it means you may have stumbled across something novel – a previously unknown principle working behind the scenes. A new discovery. Some of these moments have lead to the biggest breakthroughs in history. A compass needle twitching next to an electric wire triggered the profound realization that electricity and magnetism are deeply linked and can be converted between each other, and which today forms the very foundation of our modern world, from electric motors driving desktop fans or cars to the generators in power stations. And noticing a curious halo cleared of bacteria around a patch of mould on a petri dish opened the world of antibiotics.

These examples hint at the second crucial gift that scientific curiosity gives us all. Whenever a new principle of the natural world is discovered it opens the gateway for exploiting this fresh understanding for improving our lives. Different technologies are no more than artefacts that we have designed to exploit particular effects or principles to perform something useful for ourselves. The incandescent light bulb that revolutionized how we live our lives, for example, takes advantage of the fact that a thin wire with electricity passed along it will get very hot and glow brightly, whilst stopping the filament burning away in the process. Exploiting new principles also allows us to build more scientific instruments and experiments – new tools for inspecting or testing the world in different ways. From the thermometer to the telescope and microscope to an infrared spectrometer, these technologies have driven yet more fundamental discoveries and so the unearthing of further natural phenomena. Scientific curiosity itself creates more tools for pursuing this curiosity.

But underlying all of this formalism and experimental protocol is the same burning curiosity as any child brimming with inquisitiveness at the world – always running to see what’s around the corner, or playing with objects to see what they do and how they work, and asking unending questions of their parents.  And for me, this is what scientific curiosity is all about. But in this case, there’s no higher authority you can ask questions. You have to work out the answers yourself. (You you can explore the different dimensions of scientific curiosity – inquisitiveness, openness to other ideas, distress tolerance, and creativity and problem-solving – in the Curious Elements interactive website)

My own field of research, in astrobiology, is engaged in the search for life beyond the Earth. In some ways this is one of the newest areas of science, made possible with recent developments in our understanding of the limits of life on Earth, our capability in building sophisticated robotic probes to explore the other planets and moons in our solar system, and space-based telescopes able to spot new worlds orbiting other stars in the galaxy. But in one sense it’s also one of the most ancient forms of human inquiry – the ages-old curiosity with whether we are alone in the universe, or perhaps there are beings somewhat like us out there within the twinkling heavens.

As you might expect, astrobiology involves lots of different scientific fields – it is deeply ‘interdisciplinary’. Astrobiology sits in the middle of the Venn diagram of biochemistry, microbiology, geology, planetary sciences, physics and astronomy, and works closely with instrument designers, roboticists and engineers as well. My particular area of research – the focus of my own curiosity – is on some of the hardiest forms of life on Earth. These survival superheroes, called extremophiles, tolerate incredibly harsh environments – the driest deserts on the planet, highly acidic or alkaline waters, boiling hot or freezing cold conditions, or punishingly high levels of radiation. I visit these extreme environments on Earth – many of which are very Mars-like in important respects – to understand how life can survive there, and crucially how we might go about detecting signs of martian bacteria with our robotic explorers. I do this because I find it insanely interesting, but astrobiology could also potentially answer one of the most profound questions ever asked: are we alone…?

 

Lewis Dartnell is an astrobiology researcher and Professor at the University of Westminster. He has published a popular science book introducing astrobiology, Life in the Universe: A Beginner’s Guide, and his latest book, The Knowledge: How to Rebuild our World from Scratch is a Sunday Times Book of the Year. To explore further the role of curiosity in breakthroughs, visit Merck’s Curiosity Initiative.

Disclaimer: This post was written for Merck and the Merck Curiosity initiative. I remained in full control of the idea and concept of this piece, including all the writing, research and editing.  In the United States and Canada, Merck is known as Merck KGaA, Darmstadt, Germany.

 

 

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.

The Knowledge: Quick Reference

Guest post by Dave Zeiger

In the broad sense, The Knowledge is a compendium of information useful to post-cataclysmic persons and societies. The near-term object is to help survive and thrive in collapsed conditions, while the greater goal is renaissance.

Concise summations of a wide range of disciplines and skills rendered in durable medium – able to resist rough handling or exposure to the elements – will increase the chances of success.

Fortunately, much thought and effort has already gone into this kind of summary for students, professionals and hobbyists. Together, they comprise a goldmine of supplemental information to that presented in The Knowledge.

Such fundamentals as the scientific method, physics, chemistry, biology, medicine and select mathematics. Technologies such as accounting, electronics, mechanics. Skills such as first aid, weather forecasting, sailing and navigation. Identification guides for wild edibles, birds and animals, and survival techniques.

These are already available, though may take some looking.  Together, they comprise a gold mine of information supplemental to that presented in The Knowledge.

As a next step forward, we might begin to collect and share what exists, rate it by level and modify as necessary for survivors. We might organize pages to fill current gaps, drawing on our own and expert experience. Each is an art in itself, and synopsis is another. Collaboration encouraged!

Blacksmithing, tinsmithing, stone masonry, carpentry… the list of possibles goes on.

The three ring binder format is not only widely established but it allows tailoring to one’s individual interests and needs. It is extensible as new information becomes available. It can organize one’s own notes and sheets. It can be short-listed in time of flight. The binders themselves are available in a number of rugged designs.

Some currently available materials and services:

Search terms include quick study, quick reference, cheat sheet, study guide, infographic, etc. + topic

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.

Library of Things

Throughout much of human history, objects, tools and land weren’t owned, but shared between the community. Certainly as hunter-gathers, the concepts of ownership and amassing wealth would have been completely alien to people constantly on the move and needing to carry all possessions in their hands. Putting down roots as farmers allowed accumulation of resources, but even through to the 17th century, practically every human settlement had a “commons” – land that the locals all shared for cultivating crops and grazing livestock. Farmers worked alongside each other, helping each other out, and shared tools.

Much of this has now changed in today’s modern consumerist world.

However, set-ups like the Sharing Depot in Toronto are now bucking this trend. Offering a “library of things” for it’s two-thousand members, a subscription of $50 a year provides access to tens of thousands of dollars of tools, games, and sports equipment. And this isn’t an isolated effort – there are an estimated 80 tool libraries across North America, Europe and Asia.

Not only is this wonderfully community-minded and a far cheaper way to access the tools and equipment you need — sharing rather than owning — it’s also far more environmentally friendly.

 

Read more about the Sharing Depot of Libraries of Things in The Atlantic

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.

Paperfuge: low-tech solution for hospitals

One of the greatest challenges facing hospitals and field healthcare centres in the developing world is keeping their basic equipment running. Access to electricity or replacement parts for key machinery cannot always be relied upon. The Knowledge discusses one solution of designing incubators out of motorcycle spare parts, as these are often far easier to get hold of around the world than dedicated medical components. Now Manu Prakash at the Stanford University has designed another ingenious solution.

Centrifuges are machines that spin at very high speed to help separate samples, and are vital for a huge range of hospital tests. But they need electricity to run, and key components can be difficult to replace. Prakash has taken inspiration from an ancient toy, known as the whirligig, and produced a functional centrifuge out of incredibly simple materials – it needs only disks of paper, string, and wooden handles. His ‘paperfuge’ is ultra-low-cost, and can easily be made by readily-available materials anywhere in the world.

 

 

Despite this simplicity, the paperfuge can achieve spin rates of up to 12,500 rpm – just as good as a hospital lab machine – and so separate blood plasma from red cells and help detect diseases such as malaria, African sleeping sickness, HIV and tuberculosis.

You can read more about this brilliant, low-tech invention in their academic publication Hand-powered ultralow-cost paper centrifuge (Nature Biomedical Engineering), or in an article in The Atlantic.

 

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.

Desert greenhouses grow veg using only sunlight and seawater

A novel concept farm in the desert of South Australia is now producing 15,000 tonnes of tomatoes a year. And best of all, it does all of this with only sunlight and seawater.

Writing in New Scientist, Alice Klein explains how the futuristic greenhouses need no pesticides, fossil fuels, soil, or groundwater, and are entirely self-sufficient. Seawater is desalinated using solar power for watering the plants, and inside the greenhouses seawater-soaked cardboard lining keeps the environment nice and cool. During winter, solar power warms the greenhouses.

With a burgeoning human population,  shifts in rainfall driven by climate change, and increasing demands on freshwater, this is exactly the sort of novel technology that  could support future farming.

Read the full report in New Scientist.

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.

TED talk

The TED talk that I delivered last year on the main stage in Vancouver has now been released.

Over 18 minutes I explain the principals of how you could go about rebooting civilisation after an apocalypse. This thought experiment was a way of holding up a mirror to our  world, to explore all the behind-the-scenes fundamentals of how modern civilisation works; the stuff we just take for granted in our everyday lives. What enabled society to progress through the centuries and millennia of history?

In this talk I focus on three areas of capability: Food, Fire, and Knowledge.

You can also see stills from this event, and a live-scribed Infographic of the talk.

 

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.

Look Up!

LookUp!The excellent people at 10:10 have just launched a really nifty new smartphone app. Look Up! turns anyone into a solar treasure hunter. With just a few clicks you can help find roofs that could be turned into solar power stations, and then add them to the solar panel treasure map.

The app is a bit like Pokémon GO for clean energy and so is great fun to play. And there are even prizes for the people who log the most solar potential before the end of British Summer Time on the 30th October. So there’s no excuse not to get involved, and make sure you Look Up!

More details on their website http://lookup.solar/ , and download the app from iTunes.

 
 

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.

Minecraft Geology

Like Geology? Love MineCraft…? Then these models will be perfect for you…

The British Geological Survey has recreated several of their geological maps as 3D landscapes within the MineCraft game. Now you can explore the British Isles both above and below the ground! These models not only show the rolling land surface, but also how the underlying rock strata rise and fall, and overlap and fold, at different depths. All of the three-dimensional geology, elevation and topography are drawn from BGS and Ordinance Survey data. Now for the first time you can tunnel underground in MineCraft through real geological layers.

See the BGS website for more details on how these were made, and to download the MineCraft models.




 

 

 

 

 

The Knowledge Want to read more about the behind-the-scenes fundamentals of how our modern world works, and how you could reboot civilisation if you ever needed to...? Check out The Knowledge - available now in paperback, Kindle and audiobook.